Simulation Modeling and Analysis is an introduction to the analysis and design of computer simulation models and to the application of simulation models to real-world problems. The book emphasizes the importance of good modeling practices and provides a solid foundation for the analysis and design of computer simulation models. It also introduces the student to important simulation software and provides guidance on the selection of appropriate tools for different types of simulation problems.

Modeling and Analysis of Computer Systems is a comprehensive introduction to the design and analysis of computer systems. The book covers the fundamental concepts and principles of computer systems, including the architecture, design, and performance of modern computer systems. It also introduces the student to important simulation software and provides guidance on the selection of appropriate tools for different types of simulation problems.

Discrete Event System Simulation is a comprehensive introduction to the design and analysis of computer systems. The book covers the fundamental concepts and principles of computer systems, including the architecture, design, and performance of modern computer systems. It also introduces the student to important simulation software and provides guidance on the selection of appropriate tools for different types of simulation problems.

Simulation Modeling and Analysis is an introduction to the analysis and design of computer simulation models and to the application of simulation models to real-world problems. The book emphasizes the importance of good modeling practices and provides a solid foundation for the analysis and design of computer simulation models. It also introduces the student to important simulation software and provides guidance on the selection of appropriate tools for different types of simulation problems.

Modeling and Analysis of Computer Systems is a comprehensive introduction to the design and analysis of computer systems. The book covers the fundamental concepts and principles of computer systems, including the architecture, design, and performance of modern computer systems. It also introduces the student to important simulation software and provides guidance on the selection of appropriate tools for different types of simulation problems.

Discrete Event System Simulation is a comprehensive introduction to the design and analysis of computer systems. The book covers the fundamental concepts and principles of computer systems, including the architecture, design, and performance of modern computer systems. It also introduces the student to important simulation software and provides guidance on the selection of appropriate tools for different types of simulation problems.
Discrete-event Simulation - Lawrence M. Leemis

The book presents an integrated treatment of continuous simulation with all its background and essential prerequisites in one setting. It includes chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past several years. New chapters include basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abecedary of case studies, real-world examples, homework problems, and exercises to develop a practical understanding of the subject.

Discrete-event Simulation - Christos G. Cassandras

Theorizing and Modeling - A. A. Deelman 2009-09-30

The book provides a balanced and integrated presentation of modeling and simulation activity for both Discrete Event Simulation (DES) and Continuous System Simulation (CSS). The authors emphasize the way in which the two types of simulation are used to develop models for simulation and the integration of them. They also present the reader with a technical overview of modern simulation activity, providing a checklist for determining the suitability of discrete event simulation for the project goals. Comprehensive presentations of the validation and verification activities within the modeling and simulation methodology is also presented. The book is also an excellent reference for professionals interested in mathematical modeling, simulation, and DES.

Discrete-event Simulation - Louis G. Birta

This book provides comprehensive coverage of discrete-event simulation, emphasizing and describing the procedures used in the simulation of Dynamic Systems. The book presents an integrated treatment of continuous simulation with all its background and essential prerequisites in one setting. It includes chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past several years. New chapters include basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abecedary of case studies, real-world examples, homework problems, and exercises to develop a practical understanding of the subject.

Discrete-event Simulation - Jerry Banks

The book presents an integrated treatment of continuous simulation with all its background and essential prerequisites in one setting. It includes chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past several years. New chapters include basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abecedary of case studies, real-world examples, homework problems, and exercises to develop a practical understanding of the subject.

Discrete-event Simulation - Kenneth Train

The book presents an integrated treatment of continuous simulation with all its background and essential prerequisites in one setting. It includes chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past several years. New chapters include basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abecedary of case studies, real-world examples, homework problems, and exercises to develop a practical understanding of the subject.

Discrete-event Simulation - Harold Klee

The book presents an integrated treatment of continuous simulation with all its background and essential prerequisites in one setting. It includes chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past several years. New chapters include basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abecedary of case studies, real-world examples, homework problems, and exercises to develop a practical understanding of the subject.

Discrete-event Simulation - Barry Nelson

The book presents an integrated treatment of continuous simulation with all its background and essential prerequisites in one setting. It includes chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past several years. New chapters include basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abecedary of case studies, real-world examples, homework problems, and exercises to develop a practical understanding of the subject.

Discrete-event Simulation - José M. Garrido

The book presents an integrated treatment of continuous simulation with all its background and essential prerequisites in one setting. It includes chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past several years. New chapters include basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abecedary of case studies, real-world examples, homework problems, and exercises to develop a practical understanding of the subject.

Discrete-event Simulation - Lawrence M. Leemis

The book presents an integrated treatment of continuous simulation with all its background and essential prerequisites in one setting. It includes chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past several years. New chapters include basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abecedary of case studies, real-world examples, homework problems, and exercises to develop a practical understanding of the subject.