275 people at a local soup kitchen. In her own words, Katie shares the story of the little cabbage seedling and the big movement aimed at ending hunger one vegetable garden at a time. Katie’s Cabbage reminds us of how small things can grow and thrive when nurtured with tender loving and care and of how one person, with the support of family, friends, and community, can help make a powerful difference in the lives of so many.

Katie’s Cabbage was illustrated by Karen Heid, associate professor of art education at the University of South Carolina School of Visual Art and Design. Editorial assistance was provided by Michelle M. Martin, a dedicated gardener and the Augusta Baker Chair in Childhood Literacy at the University of South Carolina School of Library and Information Science. Patricia Moore-Pastides, First Lady of the University of South Carolina and author of Greek Revival from the Garden: Growing and Cooking For Life, offers a foreword about her friendship with Katie and her admiration of Katie’s dream to end hunger one garden at a time. We Say #NeverAgain: Reporting by the Parkland Student Journalists Melissa Faikowski 2018-10-02 A journalistic look at the shooting at Marjory Stoneman Douglas High School in Parkland and the fight for gun control—as told by the student reporters for the school’s newspaper and TV station. This timely and media-driven approach to the Parkland shooting, as reported by teens in the journalism and broadcasting programs and in the Marjory Stoneman Douglas newspaper, is an inside look at that tragic day and the events that followed that only they could tell. It showcases how the teens have become media savvy and the skills they have learned and honed—narrating social media, speaking to the press, and writing effective op-eds. Students will also share specific insight into what it has been like being approached by the press and how that has informed the way they interview their own subjects. “One thing is clear: The Parkland students are smart, media savvy, and here to fight for common sense gun laws.” -Hello Giggles

Atlas of Cilia Bioengineering and Biocomputing Wayne, Richard 2018-09-01 Cilia are microscopic finger-like cell-surface organelles possessed by a great many eukaryotic organisms, including humans, whose purposes include generating local fluid movements via rhythmic whip-like beating and environmental sensing. Despite intense research efforts since their discovery by van Leeuwenhoek in the 1670’s, several key questions regarding ciliary functions, experimental manipulation and in silico imitation remain unanswered. Major justifications for cilia research lie in their involvement in various forms of human disease (ciliopathies) and their ability to instantiate decentralized, asynchronous sensorial-actuation of adjacent matter through modulation of beating characteristics. Further elucidation of these characteristics, which is a problem requiring the combined expertise of mathematicians, computer scientists, engineers and life scientists, will lead to novel biomedical therapies, creation of ‘smart’ actuating surfaces for microfluidics/lab-on-chip applications and a greater understanding of fluid mechanics in real-world scenarios. This lavishly-illustrated anthology presents recent advances in the fields of ciliary investigation, manipulation, emulation, design of cilia robots for object sorting applications; pneumatic cilia for the optimization of fluid motion; electrostatic, magnetic and MEMS cilia for microfluidic mixing; reviews in artificial cilia fabrication, actuation and flow induction methods; Numerical and computational modelling. Analyses of thin film cilia for ‘las on chip’ microfluidic mixing applications; modelling of gel-based artificial cilia towards simulating dynamic behaviors of responsive cilia layers in complex fluids across a wide range of potential applications.