Recognizing the showing off ways to get this books Fundamentals Of Momentum Heat Mass Transfer 4th Edition is additionally useful. You have remained in right site to start getting this info. acquire the Fundamentals Of Momentum Heat Mass Transfer 4th Edition associate that we have the funds for here and check out the link.

You could purchase lead Fundamentals Of Momentum Heat Mass Transfer 4th Edition or acquire it as soon as feasible. You could speedily download this Fundamentals Of Momentum Heat Mass Transfer 4th Edition after getting deal. So, as soon as you require the books swiftly, you can straight acquire it. Its in view of that certainly easy and correspondingly fats, isnt it? You have to favor to in this manner

Fundamentals Of Momentum Heat Mass Transfer

Recognizing the showing off ways to get this books Fundamentals Of Momentum Heat Mass Transfer 4th Edition is additionally useful. You have remained in right site to start getting this info. acquire the Fundamentals Of Momentum Heat Mass Transfer 4th Edition associate that we have the funds for here and check out the link.

You could purchase lead Fundamentals Of Momentum Heat Mass Transfer 4th Edition or acquire it as soon as feasible. You could speedily download this Fundamentals Of Momentum Heat Mass Transfer 4th Edition after getting deal. So, as soon as you require the books swiftly, you can straight acquire it. Its in view of that certainly easy and correspondingly fats, isnt it? You have to favor to in this manner

2020-01-22 Applications of Heat, Mass and Fluid Boundary Layers brings together the latest research on boundary layers where there has been remarkable advancements in recent years. This book highlights relevant concepts and solutions to energy issues and environmental sustainability by combining fundamental theory on boundary layers with real-world industrial applications from, among others, the thermal, nuclear and chemical industries. The book's editors and their team of expert contributors discuss many core themes, including advanced heat transfer fluids and boundary layer analysis, physics of fluid motion and viscous flow, thermodynamics and transport phenomena, alongside key methods of analysis such as the Merk-Chao-Fagbenle method. This book’s multidisciplinary coverage will give engineers, scientists, researchers and graduate students in the areas of heat, mass, fluid flow and transfer a thorough understanding of the technicalities, methods and applications of boundary layers, with a unified approach to energy, climate change and a sustainable future. Presents up-to-date research on boundary layers with very practical applications across a diverse mix of industries includes mathematical analysis to provide detailed explanation and clarity Provides solutions to global energy issues and environmental sustainability

Handbook of Chemical Mass Transport in the Environment Louis J. Thibodeaux 2010-10-21 A comprehensive account of the state of the science of environmental mass transport Edited by Louis J. Thibodeaux and Donald Mackay, renowned experts in this field, the Handbook of Chemical Mass Transport in the Environment covers those processes which are critically important for assessing chemical fate, exposure, and risk. In a comprehensive and authoritative format, this unique handbook provides environmental chemists, geoscientists, engineers, and modelers with the essential capabilities to understand and quantify transport. In addition, it offers a one-stop resource on environmental mass transfer and mass transport coefficient estimation methods for all genres. The book begins by discussing mass transport fundamentals from an environmental perspective. It introduces the concept of mobility — key to environmental fate, since transport must occur prior to any reaction or partitioning within the natural multimedia compartments. The fugacity approach to environmental mass transfer and the conventional approach are examined. This is followed by a description of the individual mass transport processes and the appropriate flux equations required for a quantitative expression. The editors have identified 41 individual processes believed to be the most environmentally significant, which form the basis for the remainder of the book. Using a consistent format for easy reference, each chapter: Introduces the specific processes Provides a detailed qualitative description Presents key theoretical, mathematical formulations Describes field or laboratory measurements of transport parameters Gives data tables and algorithms for numerical estimates Offers a guide for users familiar with the process who are seeking a direct pathway to obtain the numerical coefficients Presents computed example problems, case studies and/or exercises with worked-through solutions and answers The final chapter presents the editors’ insight into future needs and emerging priorities. Accessible and relevant to a broad range of science and engineering users, this volume captures the state of the transport science and practice in this critical area.

Heat and Mass Transfer in Capillary-Porous Bodies A. V. Luikov 2014-05-12

Heat and Mass Transfer in Capillary-Porous Bodies describes the modern theory of heat and mass transfer on the basis of the thermodynamics of irreversible processes. This book provides a systematic account of the phenomena of heat and mass transfer in capillary-porous bodies. Organized into 10 chapters, this book begins with an overview of the processes of the transfer of heat and mass of a substance. This text then examines the application of the theory to the investigation of heat and mass exchange in walls and in technological processes for the manufacture of building materials. Other chapters consider the thermal properties of building materials by using the methods of the thermodynamics of mass transfer. The final chapter deals with the method of finite differences, which is applicable to the solution of problems of non-steady heat conduction. This book is a valuable resource for scientists, post-graduate students, engineers, and students in higher educational establishments for architectural engineering.

Computational Transport Phenomena for Engineering Analyses Richard C. Farmer 2009-06-03 Although computer technology has dramatically improved the analysis of complex transport phenomena, the methodology has yet to be effectively integrated into engineering curricula. The huge volume of literature associated with the wide variety of transport processes cannot be appreciated or mastered without using innovative tools to allow comprehen

Fundamentals Of Momentum, Heat, And Mass Transfer, 5Th Ed Wicks Welty, Wilson Rorrer 2010-10-12 The book provides a unified treatment of momentum transfer (fluid mechanics), heat transfer, and mass transfer. This new edition has been updated to include more coverage of modern topics such as biomedical/biological applications as well as an added separations topic on membranes. Additionally, the fifth edition focuses on an explicit problem-solving
materials to cover a wide range of examples, with over 1000 references. Chapters 1, 2 and 3 give a detailed introduction to membrane synthesis, transport mechanisms, and characterisation. Building on this, Chapter 4 outlines the state-of-the-art in ceramic membrane applications, including fuel cells, water purification, gas separation, and the making of cheeses, fruit juice, wine and beer. The final chapter deals with the economics of ceramic membrane processes, using industrial case studies to examine market barriers and opportunities. Ceramics are known throughout history, but now, after thousands of years, they’re making a comeback. Indeed, they may hold the key for addressing three of today’s biggest challenges: clean energy, drinking water and air pollution. This book is a must-have for anyone who wants to enter the ceramic membranes field, or keep up-to-date with the latest developments and applications. The authors, who are known for their clear writing style, combine their expertise in environmental engineering and porous materials to cover a wide range of examples, with over 1000 references. Chapters 1, 2 and 3 give a detailed introduction to membrane synthesis, transport mechanisms, and characterisation. Building on this, Chapter 4 outlines the state-of-the-art in ceramic membrane applications, including fuel cells, water purification, gas separation, and the making of cheeses, fruit juice, wine and beer. The final chapter deals with the economics of ceramic membrane processes, using industrial case studies to examine market barriers and opportunities. Ceramics are known throughout history, but now, after thousands of years, they’re making a comeback. Indeed, they may hold the key for addressing three of today’s biggest challenges: clean energy, drinking water and air pollution. This book is a must-have for anyone who wants to enter the ceramic membranes field, or keep up-to-date with the latest developments and applications.

FUNDAMENTALS OF MOMENTUM, HEAT, AND MASS TRANSFER, 4TH ED

James R. Welty

Heat Transfer: Steady-State Conduction Unsteady-State Conduction Convective Heat Transfer Convective Heat-Transfer Correlations Boiling And Condensation Heat-Transfer Equipment Radiation Heat Transfer Fundamentals Of Mass Transfer Differential Equations Of Mass Transfer: Steady-State Molecular Diffusion Unsteady-State Molecular Diffusion Convective Mass Transfer Convective Mass Transfer Between Phases: Convective-Mass-Transfer Correlations Mass-Transfer Equipment Rheology - Volume I Crispulo Gallegos 2010-11-30 Rheology is a component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. Rheology is the study of the flow of matter. It is classified as a physics discipline and focuses on substances that do not maintain a constant viscosity or state of flow. That can involve liquids, soft solids and solids that are under conditions that cause them to flow. It applies to substances which have a complex molecular structure, such as muds, sludges, suspensions, polymers and other glass formers, as well as many foods and additives, bodily fluids and other biological materials. The theme on Rheology focuses on five main areas, namely, basic concepts of rheology; rheometry; rheological materials, rheological processes and theoretical rheology. Of course, many of the chapters contain material from more than one general area. Rheology is an interdisciplinary subject which embraces many aspects of mathematics, physics, chemistry, engineering and biology. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.

A HEAT TRANSFER TEXTBOOK John H. Lienhard 2004

Engineering and Chemical Thermodynamics Milo D. Koretsky 2012-12-17 Chemical engineers face the challenge of learning the difficult concept and application of entropy and the 2nd Law of Thermodynamics. By following a visual approach and offering qualitative discussions of the role of molecular interactions, Koretsky helps them understand and visualize thermodynamics. Highlighted examples show how the material is applied in the real world. Expanded coverage includes biological content and examples, the Equation of State approach for both liquid and vapor phases in VLE, and the practical side of the 2nd Law. Engineers will then be able to use this resource as the basis for more advanced concepts.

Fundamentals of Momentum, Heat, and Mass Transfer James Welty 2020-06-23 The field's essential standard for more than three decades, Fundamentals of Momentum, Heat and Mass Transfer offers a systematic introduction to transport phenomena and rate processes. Thorough coverage of central principles helps students build a foundational knowledge base while developing vital analysis and problem solving skills. Momentum, heat, and mass transfer are introduced sequentially for clarity of concept and logical organization of processes, while examples of modern applications illustrate real-world practices and strengthen student comprehension. Designed to keep the focus on concept over content, this text uses accessible language and efficient pedagogy to streamline student mastery and facilitate further exploration. Abundant examples, practice problems, and illustrations reinforce basic principles, while extensive tables simplify comparisons of the various states of matter. Detailed coverage of topics including dimensional analysis, viscous flow, conduction, convection, and molecular diffusion provide broadly-relevant guidance for undergraduates at the sophomore or junior level, with special significance to students of chemical, mechanical, environmental, and biochemical engineering.

Engineering Principles of Unit Operations in Food Processing Seid Mahdi Jafari 2021-06-22 Engineering Principles of Unit Operations in Food Processing, Volume I in the Woodhead Publishing Series, In Unit Operations and Processing Equipment in the Food Industry series, presents basic principles of food engineering with an emphasis on unit operations, such as heat transfer, mass transfer and fluid mechanics. Brings new opportunities in the optimization of food processing operations Thoroughly explores applications of food engineering to food processes Focuses on unit operations from an engineering viewpoint Convective Heat and Mass Transfer S. Mostafa Ghiaasiaan 2018-06-12 Convective Heat and Mass Transfer, Second Edition, is ideal for the graduate level study of convection heat and mass transfer, with coverage of well-established theory and practice as well as trending topics, such as nanoscale heat transfer and CFD. It is appropriate for both Mechanical and Chemical Engineering courses/modules.

Heat Transfer Aziz Belmiloudi 2011-01-28 Over the past few decades there has been a prolific increase in research and development in area of heat transfer, heat exchangers and their associated technologies. This book is a collection of current research in the above mentioned areas and discusses experimental, theoretical and calculation approaches and industrial utilizations with modern ideas and methods to study heat transfer for single and multiphase systems. The topics considered include various basic concepts of heat transfer, the fundamental modes of heat transfer (namely conduction, convection and radiation), thermophysical properties, condensation, boiling, freezing, innovative experiments, measurement analysis, theoretical models and simulations, with
many real-world problems and important modern applications. The book is divided
into four sections: “Heat Transfer in Micro Systems”, “Boiling, Freezing and
Condensation Heat Transfer”, “Heat Transfer and its Assessment”, “Heat
Transfer Calculations”, and each section discusses a wide variety of
techniques, methods and applications in accordance with the subjects. The
combination of theoretical and experimental investigations with many important
practical applications of current interest will make this book of interest to
researchers, scientists, engineers and graduate students, who make use of
experimental and theoretical investigations, assessment and enhancement
techniques in this multidisciplinary field as well as to researchers in
mathematical modelling, computer simulations and information sciences, who make
use of experimental and theoretical investigations as a means of critical
assessment of models and results derived from advanced numerical simulations
and improvement of the developed models and numerical methods.

Providing a unified treatment of momentum transfer (fluid mechanics), heat
transfer and mass transfer. This new edition includes more modern applications of
the basic material, and to provide many new homework exercises at the end of
each chapter.

Nanopackaging James E. Morris 2018-09-22 This book presents a comprehensive
overview of nanoscale electronics and systems packaging, and covers nanoscale
structures, nanoelectronics packaging, nanowire applications in packaging, and
offers a roadmap for future trends. Composite materials are studied for high-k
dielectrics, resistors and inductors, electrically conductive adhesives,
conductive “inks,” underfill fillers, and solder enhancement. The book is intended
for industrial and academic researchers, industrial electronics packaging
engineers who need to keep abreast of progress in their field, and others with
interests in nanotechnology. It surveys the application of nanotechnologies to
electronics packaging, as represented by current research across the field.

The Art of Modeling in Science and Engineering with Mathematica® Diran Basmajian
2006-08-18 Thoroughly revised and updated, The Art of Modeling in Science
and Engineering with Mathematica®, Second Edition explores the mathematical
tools and procedures used in modeling based on the laws of conservation of
mass, energy, momentum, and electrical charge. The authors have culled and
consolidated the best from the first edition and expanded the range of applied
eamples to reach a wider audience. The text proceeds, in measured steps, from
simple models of real-world problems at the algebraic and ordinary differential
equations (ODE) levels to more sophisticated models requiring partial
differential equations. The traditional solution methods are supplemented with
Mathematica®, which is used throughout the text to arrive at solutions for
many of the problems presented. The text is enlivened with a host of
illustrations and practice problems drawn from classical and contemporary
sources. They range from Thomson’s famous experiment to determine e/m and
Euler’s model for the buckling of a strut to an analysis of the propagation of
emissions and the performance of wind turbines. The mathematical tools required
are first explained in separate chapters and then carried along throughout the
text to solve and analyze the models. Commentaries at the end of each
illustration draw attention to the pitfalls to be avoided and, perhaps most
important, alert the reader to unexpected results that defy conventional
wisdom. These features and more make the book the perfect tool for resolving
three common difficulties: the proper choice of model, the absence of precise
solutions, and the need to make suitable simplifying assumptions and
approximations. The book covers a wide range of physical processes and
phenomena drawn from various disciplines and clearly illuminates the link
between the physical system being modeled and the mathematical expression that
results.

Transport Phenomena Fundamentals Joel L. Plawsky 2020-02-27 The fourth
dition of Transport Phenomena Fundamentals continues with its streamlined
approach to the subject, based on a unified treatment of heat, mass, and
momentum transfer using a balance equation approach. The new edition includes
more worked examples within each chapter and adds confidence-building problems
at the end of each chapter. Some numerical solutions are included in an appendix
for students to check their comprehension of key concepts. Additional resources
online include exercises that can be practiced using a wide range of software
programs available for simulating engineering problems, such as, COMSOL®,
Maple®, Fluent, Aspen, Mathematica®, Python and MATLAB®, lecture notes, and
past exams. This edition incorporates a wider range of problems to expand the
utility of the text beyond chemical engineering. The text is divided into two
parts, which can be used for teaching a two-term course. Part I covers the
balance equation in the context of diffusive transport—momentum, energy, mass,
and charge. Each chapter adds a term to the balance equation, highlighting that
term’s effects on the physical behavior of the system and the underlying
mathematical description. Chapters familiarize students with modeling and
developing mathematical expressions based on the analysis of a control volume,
the derivation of the governing differential equations, and the solution to those
equations with appropriate boundary conditions. Part II builds on the diffusive
transport balance equation by introducing convective transport terms,
focusing on partial, rather than ordinary, differential equations. The text
describes paring down the full, microscopic equations governing the phenomena to
simplify the models and develop engineering solutions, and it introduces
Macroscopic versions of the balance equations for use where the microscopic approach is either too difficult to solve or would yield much more information that is actually required. The text discusses the momentum, Bernoulli, energy, and species continuity equations, including a brief description of how these equations are applied to heat exchangers, continuous contactors, and chemical reactors. The book introduces the three fundamental transport coefficients: the friction factor, the heat transfer coefficient, and the mass transfer coefficient in the context of boundary layer theory. Laminar flow situations are treated first followed by a discussion of turbulence. The final chapter covers the basics of radiative heat transfer, including concepts such as blackbodies, graybodies, radiation shields, and enclosures.

Advanced Heat and Mass Transfer

Amir Faghri 2010-01-01

Information Sources in Engineering

Roderick A. Macleod 2012-04-17 The current, thoroughly revised and updated edition of this approved title, evaluates information sources in the field of technology. It provides the reader not only with information of primary and secondary sources, but also analyses the details of information from all the important technical fields, including environmental technology, biotechnology, aviation and defence, nanotechnology, industrial design, material science, security and health care in the workplace, as well as aspects of the fields of chemistry, electro technology and mechanical engineering. The sources of information presented also contain publications available in printed and electronic form, such as books, journals, electronic magazines, technical reports, dissertations, scientific reports, articles from conferences, meetings and symposiums, patents and patent information, technical standards, products, electronic full text services, abstract and indexing services, bibliographies, reviews, internet sources, reference works and publications of professional associations. Information Sources in Engineering is aimed at librarians and information scientists in technical fields as well as non-professional information specialists, who have to provide information about technical issues. Furthermore, this title is of great value to students and people with technical professions.

Convective Heat and Mass Transfer

William Morrow Kays 2005 The 4th edition of CHMT continues the trend, initiated with the 3rd ed., of encouraging the use of a numerically based, computational approach to solving convective heat and mass transfer problems. The book also continues its tradition of also providing classic problem solving approaches to this subject. This textbook presents a strong theoretical basis for convective heat and mass transfer by focusing on boundary layer theory. This new edition provides optional coverage of the software teaching tool TEXSTAN. This boundary layer computer program can be used to enhance the understanding of the relationship between the surface friction, heat, and mass transfer and their respective flow fields. TEXSTAN contains the data structure needed to describe and solve most convective problems encountered by senior and graduate level students. Other significant changes include: expanded chapter on convective heat transfer with body forces; reduced focus on heat exchanger theory; completely rewritten chapters on mass transfer to include more engineering examples for both low and high transfer rates, to provide the student with more insight to a seemingly difficult subject. Search for this book on EngineeringCS.com to find password-protected solutions to all chapter problems and additional information on TEXSTAN.

Fluid Mechanics, Heat Transfer, and Mass Transfer

K. S. Raju 2011-04-20 This broad-based book covers the three major areas of Chemical Engineering. Most of the books in the market involve one of the individual areas, namely, Fluid Mechanics, Heat Transfer or Mass Transfer, rather than all the three. This book presents this material in a single source. This avoids the user having to refer to a number of books to obtain information. Most published books covering all the three areas in a single source emphasize theory rather than practical issues. This book is written with emphasis on practice with brief theoretical concepts in the form of questions and answers, not adopting stereo-typed question-answer approach practiced in certain books in the market, bridging the two areas of theory and practice with respect to the core areas of chemical engineering. Most parts of the book are easily understandable by those who are not experts in the field. Fluid Mechanics chapters include basics on non-Newtonian systems which, for instance find importance in polymer and food processing, flow through piping, flow measurement, pumps, mixing technology and fluidization and two phase flow. For example it covers types of pumps and valves, membranes and areas of their use, different equipment commonly used in chemical industry and their merits and drawbacks. Heat Transfer chapters cover the basics involved in conduction, convection and radiation, with emphasis on insulation, heat exchangers, evaporators, condensers, reboilers and fired heaters. Design methods, performance, operational issues and maintenance problems are highlighted. Topics such as heat pipes, heat pumps, heat tracing, steam traps, refrigeration, cooling of electronic devices, NOx control find place in the book. Mass transfer chapters cover basics such as diffusion, theories, analogies, mass transfer coefficients and mass transfer with chemical reaction, equipment such as tray and packed columns, column internals including structural packings, design, operational and installation issues, drums and separators are discussed in good detail. Absorption, distillation, extraction and leaching with applications and design methods, including emerging practices involving Divided Wall and Petluk column arrangements, multicomponent separations, supercritical solvent extraction find place in the book.
This textbook presents a modern treatment of fundamentals of heat and mass transfer in the context of all types of multiphase flows with possibility of phase-changes among solid, liquid and vapor. It serves equally as a textbook for undergraduate senior and graduate students in a wide variety of engineering disciplines including mechanical engineering, chemical engineering, material science and engineering, nuclear engineering, biomedical engineering, and environmental engineering. Multiphase Heat Transfer and Flow can also be used to teach contemporary and novel applications of heat and mass transfer. Concepts are reinforced with numerous examples and end-of-chapter problems. A solutions manual and PowerPoint presentation are available to instructors. While the book is designed for students, it is also very useful for practicing engineers working in technical areas related to both macro- and micro-scale systems that emphasize multiphase, multicomponent, and non-conventional geometries with coupled heat and mass transfer and phase change, with the possibility of full numerical simulation.

This introductory text discusses the essential concepts of three fundamental transport processes, namely, momentum transfer, heat transfer, and mass transfer. Apart from chemical engineering, transport processes play an increasingly important role today in the fields of biotechnology, nanotechnology and microelectronics. The book covers the basic laws of momentum, heat and mass transfer. All the three transport processes are explained using two approaches—first by flux expressions and second by shell balances. These concepts are applied to formulate the physical problems of momentum, heat and mass transfer. Simple physical processes from the chemical engineering field are selected to understand the mechanism of these transfer operations. Though these problems are solved for unidirectional flow and laminar flow conditions only, turbulent flow conditions are also discussed. Boundary conditions and Prandtl mixing models for turbulent flow conditions are explained as well. The unsteady-state conditions for momentum, heat and mass transfer have also been highlighted with the help of simple cases. Finally, the approach of analogy has also been adopted in the book to understand these three molecular transport processes. Different analogies such as Reynolds, Prandtl, von Kármán and Chilton-Colburn are discussed in detail. This book is designed for the undergraduate students of chemical engineering and covers the syllabi on Transport Phenomena as currently prescribed in most institutes and universities.

The Theory of Laser Materials Processing

John Dowden

2017-06-16

The revised edition of this important reference volume presents an expanded overview of the analytical and numerical approaches employed when exploring and developing modern laser materials processing techniques. The book shows how general principles can be used to obtain insight into laser processes, whether derived from fundamental physical theory or from direct observation of experimental results. The book gives readers an understanding of the strengths and limitations of simple numerical and analytical models that can then be used as the starting-point for more elaborate models of specific practical, theoretical or commercial value. Following an introduction to the mathematical formulation of some relevant classes of physical ideas, the core of the book consists of chapters addressing key applications in detail: cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding and forming. The second edition includes a new chapter on glass cutting with lasers, as employed in the display industry. A further addition is a chapter on meta-modelling, whose purpose is to construct fast, simple and reliable models based on appropriate sources of information. It then makes it easy to explore data visually and is a convenient interactive tool for scientists to improve the quality of their models and for developers when designing their processes. As in the first edition, the book ends with an updated introduction to comprehensive numerical simulation. Although the book focuses on laser interactions with materials, many of the principles and methods explored can be applied to thermal modelling in a variety of different fields and at different power levels. It is aimed principally however at academic and industrial researchers and developers in the field of laser technology.

Momentum, Heat, and Mass Transfer Fundamentals Robert Greenkorn 2018-10-03 “Presents the fundamentals of momentum, heat, and mass transfer from both a microscopic and a macroscopic perspective. Features a large number of idealized and real-world examples that we worked out in detail.”

Fundamentals of Polymer Engineering, Revised and Expanded Anil Kumar 2003-01-21 Exploring the characterization, thermodynamics and structural, mechanical, thermal and transport behavior of polymers as melts, solutions and solids, this text covers essential concepts and breakthroughs in reactor design and polymer production and processing. It contains modern theories, end-of-chapter problems and real-world examples for a clear understanding of polymer function and development. Fundamentals of Polymer Engineering, Second Edition provides a thorough grounding in the fundamentals of polymer science for more advanced study in the field of polymers. Topics include reaction engineering of step-growth polymerization, emulsion polymerization, and polymer diffusion.

Momentum, Heat, and Mass Transfer Fundamentals Robert Greenkorn 2018-10-03 “Presents the fundamentals of momentum, heat, and mass transfer from both a microscopic and a macroscopic perspective. Features a large number of idealized and real-world examples that we worked out in detail.”

Mass and Heat Transfer T. W. Fraser Russell 2008-02-11 This text allows instructors to teach a course on heat and mass transfer that will equip students with the pragmatic, applied skills required by the modern chemical industry. This new approach is a combined presentation of heat and mass transfer, maintaining mathematical rigor while keeping mathematical analysis to a minimum. This allows students to develop a strong conceptual understanding, and teaches them how to become proficient in engineering analysis of mass contactors and heat exchangers and the transport theory used as a basis for determining how critical coefficients depend upon physical properties and fluid motions. Students will first study the engineering analysis and design of equipment important in experiments and for the processing of material at the commercial scale. The second part of the book presents the fundamentals of transport phenomena relevant to these applications. A complete teaching package includes a comprehensive instructor’s guide, exercises, case studies, and project assignments.

Mass Transfer and Separation Processes Diran Basmadjian 2007-04-25 Mass transfer along with separation processes is an area that is often quite challenging to master, as most volumes currently available complicate the learning by teaching mass transfer linked with heat transfer, rather than focusing on more relevant techniques. With this thoroughly updated second edition, Mass Transfer and Separation Processes: Principles and Applications presents a highly thoughtful and instructive introduction to this sophisticated material by teaching mass transfer and separation processes as unique though related entities. In an ever increasing effort to demystify the subject, with this edition, the author—Avoids more complex separation processes Places a greater emphasis on the art of simplifying assumptions Conveys a greater sense of scale with the inclusion of numerous photos of actual installations Makes the math only as complicated as necessary while reviewing fundamental principles that may have been forgotten. The book explores essential principles and reinforces the concepts with classical and contemporary illustrations drawn from the engineering, environmental, and biological sciences. The theories of heat conduction and transfer are utilized not so much to draw analogies but rather to make fruitful use of existing solutions not seen in other texts on the subject. Both an introductory resource and a reference, this important text serves environmental, biomedical, and engineering professionals, as well as anyone wishing to gain a grasp on this subject and its increasing relevance across a number of fields. It fills a void in traditional chemical engineering literature by providing access to the principles and working practices that allow mass transfer theory to be applied to separation processes.