Engineering Electromagnetics

Right here, we have countless book Engineering Electromagnetics and collections to check out. We additionally meet the expense of variant types and then type of the books to browse. The enjoyable book, fiction, history, novel, scientific research, as competently as various further sorts of books are readily reachable here.

As this Engineering Electromagnetics, it ends going on beast one of the favored book Engineering Electromagnetics collections that we have. This is why you remain in the best website to see the incredible book to have.

Prob. & Solutions of Engineering Electromagnetics Exp. Teachers 2007-02-01
Introduction to Engineering Electromagnetics Yeon Ho Lee 2013-03-26 This text provides students with the missing link that can help them master the basic principles of electromagnetics. The concept of vector fields is introduced by starting with clear definitions of position, distance, and base vectors. The symmetries of typical configurations are discussed in detail, including cylindrical, spherical, translational, and two-fold rotational symmetries. To avoid serious confusion between symbols with two indices, the text adopts a new notation: a letter with subscript 1-2 for the work done in moving a unit charge from point 2 to point 1, in which the subscript 1-2 mimics the difference in potentials, while the hyphen implies a sense of backward direction, from 2 to 1. This text includes 300 figures in which real data are drawn to scale. Many figures provide a three-dimensional view. Each subsection includes a number of examples that are solved by examining rigorous approaches in steps. Each subsection ends with straightforward exercises and answers through which students can check if they correctly understood the concepts. A total 350 examples and exercises are provided. At the end of each section, review questions are inserted to point out key concepts and relations discussed in the section. They are given with hints referring to the related equations and figures. The book contains a total of 280 end-of-chapter problems.

Introduction to Engineering Electromagnetic Fields Korada Umashankar 1989 This is a textbook designed to provide analytical background material in the area of Engineering Electromagnetic Fields for the senior level undergraduate and preparatory level graduate electrical engineering students. It is also an excellent reference book for researchers in the field of computational electromagnetic fields. The textbook covers Static Electric and Magnetic Fields: The basic laws governing the Electrostatics, Magnetostatics with engineering examples are presented which are enough to understand the fields and the electric current and charge sources. Dynamic Electromagnetic Fields: The Maxwell's equations in Time-Domain and solutions, the Maxwell's equations in Frequency-Domain and solutions. Extensive approaches are presented to solve partial differential equations satisfying electromagnetic boundary value problems. Foundation to electromagnetic field radiation, guided wave propagation is discussed to expose at the undergraduate level application of the Maxwell's equations to practical engineering problems.

Computational Electromagnetics for RF and Microwave Engineering David B. Davidson 2005-02-24 Introduces CEM methods, applying the codes that implement them to real-world engineering problems.

Wavelet Applications in Engineering Electromagnetics Tapan K. Sarkar 2002 V; List of Figures ix; List of Tables xv; PREFACE xix; ACKNOWLEDGMENTS xxi; 1 ROAD MAP OF THE BOOK 1; 1.1 INTRODUCTION 1; 1.2 WHY USE WAVELETS? 1; 1.3 WHAT ARE WAVELETS? 2; 1.4 WHAT IS THE WAVELET TRANSFORM? 3; 1.5 USE OF WAVELETS IN THE NUMERICAL SOLUTION OF ELECTROMAGNETIC FIELD PROBLEMS 4; 1.6
WAVELET METHODOLOGIES COMPLEMENT FOURIER TECHNIQUES 7; 1.7 OVERVIEW OF THE CHAPTERS 10; REFERENCES 11; 2 WAVELETS FROM AN ELECTRICAL ENGINEERING PERSPECTIVE 15; 2.1 INTRODUCTION 15; 2.2 DEVELOPMENT OF THE DISCRETE WAVELET METHODOLOGY FROM FILTER THEORY CONCEPTS 16.

Engineering Electromagnetics with E-Text and Appendix E William H. Hayt 2001-09 "Engineering Electromagnetics" is a "classic" in Electrical Engineering textbook publishing. First published in 1958 it quickly became a standard and has been a best-selling book for over 4 decades. A new co-author from Georgia Tech has come aboard for the sixth edition to help update the book. Designed for introductory courses in electromagnetics or electromagnetic field theory at the junior-level and offered in departments of electrical engineering, the text is a widely respected, updated version that stresses fundamentals and problem solving and discusses the material in an understandable, readable way. As in the previous editions, the book retains the scope and emphasis that have made the book very successful while updating all the problems.

Elements of Engineering Electromagnetics Nannapaneni Narayana Rao 2004 This book, with its versatile approach, includes thorough coverage of statics with an emphasis on the dynamics of engineering electromagnetics. It integrates practical applications, numerical details, and completely covers all relevant principles. Topics include vectors and fields, Maxwell's Equations, fields and waves, electromagnetic potentials, devices, circuits, and systems, and transmission-line essentials for digital electronics. The second part of the book covers communications, guided wave principles, electronics and photonics, and radiation and antennae. A valuable resource for computer engineering and electrical engineering professionals.

Electromagnetics for Engineering Students (Part 2) Sameir M. Ali Hamed 2018-04-09 Electromagnetics for Engineering Students is a textbook in two parts, Part I and II, that cover all topics of electromagnetics needed for undergraduate students from vector analysis to antenna principles. In both parts of the book, the topics are presented in sufficient details such that the students will follow the analytical development easily. Each chapter is supported by many illustrative examples, solved problems, and the end of chapter problems to explain the principles of the topics and enhance the knowledge of the student. There are a total of 681 problems in the both parts of the book as follows: 162 illustrative examples, 88 solved problems, and 431 end of chapter problems. This part is a continuation of Part I and focuses on the application of Maxwell's equations and the concepts that are covered in Part I to analyze the characteristics of wave propagation in half-space and bounded media including metamaterials. Moreover, a chapter has been devoted to the topic of antennas to provide readers with the fundamental concepts related to antenna engineering. The key features of this part: • In addition to the coverage of classical topics in electromagnetic normally covered in the similar available texts, this part of the book adds some advanced concepts and topics such as: • Application of multi-pole expansion for vector potentials. • More detailed analysis on the topic of waveguides including circular waveguides. • Refraction through metamaterials and the concept of negative refractive index. • Detailed and easy-to follow presentation of mathematical analyses and problems. • An appendix of mathematical formulae and functions.

Loose Leaf for Engineering Electromagnetics John A. Buck 2018-07-25 First published just over 50 years ago and now in its Eighth Edition, Bill Hayt and John Buck's Engineering Electromagnetics is a classic text that has been updated for electromagnetics education today. This widely-respected book stresses fundamental concepts and problem solving, and discusses the material in an understandable and readable way. Numerous illustrations and analogies are provided to aid the reader in grasping the difficult concepts. In addition, independent learning is facilitated by the presence of many examples and problems. Important updates and revisions have been included in this edition. One of the most significant is a new chapter on electromagnetic radiation and antennas. This chapter covers the basic principles of radiation, wire antennas, simple arrays, and transmit-receive systems.

Teaching Electromagnetics Krishnasamy T.
Selvan 2021-06-18 Teaching Electromagnetics: Innovative Approaches and Pedagogical Strategies is a guide for educators addressing course content and pedagogical methods primarily at the undergraduate level in electromagnetic theory and its applications. Topics include teaching methods, lab experiences and hands-on learning, and course structures that help teachers respond effectively to trends in learning styles and evolving engineering curricula. The book grapples with issues related to the recent worldwide shift to remote teaching. Each chapter begins with a high-level consideration of the topic, reviews previous work and publications, and gives the reader a broad picture of the topic before delving into details. Chapters include specific guidance for those who want to implement the methods and assessment results and evaluation of the effectiveness of the methods. Respecting the limited time available to the average teacher to try new methods, the chapters focus on why an instructor should adopt the methods proposed in it. Topics include virtual laboratories, computer-assisted learning, and MATLAB® tools. The authors also review flipped classrooms and online teaching methods that support remote teaching and learning. The end result should be an impact on the reader represented by improvements to his or her practical teaching methods and curricular approach to electromagnetics education. The book is intended for electrical engineering professors, students, lab instructors, and practicing engineers with an interest in teaching and learning. In summary, this book: Surveys methods and tools for teaching the foundations of wireless communications and electromagnetic theory Presents practical experience and best practices for topical coverage, course sequencing, and content Covers virtual laboratories, computer-assisted learning, and MATLAB tools Reviews flipped classroom and online teaching methods that support remote teaching and learning Helps instructors in RF systems, field theory, and wireless communications bring their teaching practice up to date Dr. Krishnasamy T. Selvan is Professor in the Department of Electronics & Communication Engineering, SSN College of Engineering, since June 2012. Dr. Karl F. Warnick is Professor in the Department of Electrical and Computer Engineering at BYU.

Engineering Electromagnetics Rajeev Bansal 2018-10-08 Electromagnetics is too important in too many fields for knowledge to be gathered on the fly. Knowing how to apply theoretical principles to the solutions of real engineering problems and the development of new technologies and solutions is critical. Engineering Electromagnetics: Applications provides such an understanding, demonstrating how to apply the underlying physical concepts within the particular context of the problem at hand. Comprising chapters drawn from the critically acclaimed Handbook of Engineering Electromagnetics, this book supplies a focused treatment covering radar, wireless, satellite, and optical communication technologies. It also introduces various numerical techniques for computer-aided solutions to complex problems, emerging problems in biomedical applications, and techniques for measuring the biological properties of materials. Engineering Electromagnetics: Applications shares the broad experiences of leading experts regarding modern problems in electromagnetics. Elements of Engineering Electromagnetics Nannapaneni Narayana Rao 1994 This text examines applications and covers statics with an emphasis on the dynamics of engineering electromagnetics. This edition features a new chapter on electromagnetic principles for photonics, and sections on cylindrical metallic waveguides and losses in waveguides and resonators. Elements of Engineering Electromagnetics, 6/e Rao

Fundamentals of Engineering Electromagnetics: Pearson New International Edition David K. Cheng 2013-11-01 Fundamental of Engineering Electromagnetics not only presents the fundamentals of electromagnetism in a concise and logical manner, but also includes a variety of interesting and important applications. While adapted from his popular and more extensive work, Field and Wave Electromagnetics, this text incorporates a number of innovative pedagogical features. Each chapter begins with an overview which serves to offer qualitative guidance to the subject matter and motivate the student. Review questions and worked examples throughout each
chapter reinforce the student's understanding of the material. Remarks boxes following the review questions and margin notes throughout the book serve as additional pedagogical aids. Advanced Engineering Electromagnetics Constantine A. Balanis 2012-01-24 Balanis’ second edition of Advanced Engineering Electromagnetics – a global best-seller for over 20 years – covers the advanced knowledge engineers involved in electromagnetic need to know, particularly as the topic relates to the fast-moving, continually evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antenna, microwave and wireless communication) points to an increase in the number of engineers needed to specialize in this field. In addition, the Instructor Book Companion Site contains a rich collection of multimedia resources for use with this text. Resources include: Ready-made lecture notes in Power Point format for all the chapters. Forty-nine MATLAB® programs to compute, plot and animate some of the wave phenomena Nearly 600 end-of-chapter problems, that's an average of 40 problems per chapter (200 new problems; 50% more than in the first edition) A thoroughly updated Solutions Manual 2500 slides for Instructors are included. Essentials of Electromagnetics for Engineering David A. de Wolf 2001 A clearly written introduction to the key physical and engineering principles of electromagnetics, first published in 2000. Electromagnetics Steven Ellingson 2019-12-13 Electromagnetic Engineering and Waves Aziz S. Inan 2014-08-20 "Engineering Electromagnetics and Waves" is designed for upper-division college and university engineering students, for those who wish to learn the subject through self-study, and for practicing engineers who need an up-to-date reference text. The student using this text is assumed to have completed typical lower-division courses in physics and mathematics as well as a first course on electrical engineering circuits." "This book provides engineering students with a solid grasp of electromagnetic fundamentals and electromagnetic waves by emphasizing physical understanding and practical applications. The topical organization of the text starts with an initial exposure to transmission lines and transients on high-speed distributed circuits, naturally bridging electrical circuits and electromagnetics. Teaching and Learning ExperienceThis program will provide a better teaching and learning experience-for you and your students. It provides: Modern Chapter OrganizationEmphasis on Physical UnderstandingDetailed Examples, Selected Application Examples, and Abundant IllustrationsNumerous End-of-chapter Problems, Emphasizing Selected Practical ApplicationsHistorical Notes on the Great Scientific PioneersEmphasis on Clarity without Sacrificing Rigor and CompletenessHundreds of Footnotes Providing Physical Insight, Leads for Further Reading, and Discussion of Subtle and Interesting Concepts and Applications" Engineering Electromagnetics William Hart Hayt (Jr.) 2018-02 Advanced Engineering Electromagnetics Wei-Tou Ni 2018-06 Electromagnetics is all around us. In simple words, every time we turn a power switch on, every time we press a key on our computer keyboard, or every time we perform a similar action involving an everyday electrical appliance, Electromagnetics comes into action. It is the foundation for the technologies of electrical and computer engineering, spanning the entire
electromagnetic spectrum, from direct current to light, from the electrically and magnetically based technologies to the electronics technologies to the photonics technologies. As such, in the context of engineering education, it is fundamental to the study of electrical and computer engineering. While the fundamentals of electromagnetic fields remain the same, the manner in which they are taught may change with the passing of time owing to the requirements of the curricula and shifting emphasis of treatment of the fundamental concepts with the evolution of the technologies of electrical and computer engineering. The present book titled, Advanced Engineering Electromagnetics presents comprehensive coverage on advances and applications in the modern development of electromagnetics. This book covers state of the art research and reviews on new theories, methodologies and computational techniques, and interpretations of both theoretical and experimental results. It provides a thorough treatment of the theory of electrodynamics, mainly from a classical field theoretical point of view, and includes such things as formal electrostatics and magnetostatics and their unification into electrodynamics, the electromagnetic potentials, gauge transformations, covariant formulation of classical electrodynamics, force, momentum and energy of the electromagnetic field, radiation and scattering phenomena, electromagnetic waves and their propagation in vacuum and in media, and covariant Lagrangian/Hamiltonian field theoretical methods for electromagnetic fields, particles and interactions. This book will appeal to engineers and scientists in the electromagnetics profession and will act as a source of new topics for researchers in electromagnetics.

Fundamentals of Engineering Electromagnetics
Rajeev Bansal 2018-10-08

Electromagnetics is too important in too many fields for knowledge to be gathered on the fly. A deep understanding gained through structured presentation of concepts and practical problem solving is the best way to approach this important subject. Fundamentals of Engineering Electromagnetics provides such an understanding, distilling the most important theoretical aspects and applying this knowledge to the formulation and solution of real engineering problems. Comprising chapters drawn from the critically acclaimed Handbook of Engineering Electromagnetics, this book supplies a focused treatment that is ideal for specialists in areas such as medicine, communications, and remote sensing who have a need to understand and apply electromagnetic principles, but who are unfamiliar with the field. Here is what the critics have to say about the original work "...accompanied with practical engineering applications and useful illustrations, as well as a good selection of references ... those chapters that are devoted to areas that I am less familiar with, but currently have a need to address, have certainly been valuable to me. This book will therefore provide a useful resource for many engineers working in applied electromagnetics, particularly those in the early stages of their careers." -Alastair R. Ruddle, The IEE Online "...a tour of practical electromagnetics written by industry experts ... provides an excellent tour of the practical side of electromagnetics ... a useful reference for a wide range of electromagnetics problems ... a very useful and well-written compendium..." -Alfy Riddle, IEEE Microwave Magazine

Fundamentals of Engineering Electromagnetics lays the theoretical foundation for solving new and complex engineering problems involving electromagnetics.

Electromagnetics, Volume 1 (BETA)
Steven W. Ellingson 2018-01-03

Electromagnetics (CC BY-SA 4.0) is an open textbook intended to serve as a primary textbook for a one-semester first course in undergraduate engineering electromagnetics, and includes:electric and magnetic fields; electromagnetic properties of materials; electromagnetic waves; and devices that operate according to associated electromagnetic principles including resistors, capacitors, inductors, transformers, generators, and transmission lines. This book employs the "transmission lines first" approach, in which transmission lines are introduced using a lumped-element equivalent circuit model fora differential length of transmission line, leading to one-dimensional wave equations for voltage and current. This book is intended for electrical engineering students in the third year of a bachelor of science degree program. A free electronic version of this book is available at: https://doi.org/10.7294/W4WQ01ZM
An Introduction to Applied Electromagnetics and Optics Vladimir V. Mitin 2016-11-18 Modern technology is rapidly developing and for this reason future engineers need to acquire advanced knowledge in science and technology, including electromagnetic phenomena. This book is a contemporary text of a one-semester course for junior electrical engineering students. It covers a broad spectrum of electromagnetic phenomena such as, surface waves, plasmas, photonic crystals, negative refraction as well as related materials including superconductors. In addition, the text brings together electromagnetism and optics as the majority of texts discuss electromagnetism disconnected from optics. In contrast, in this book both are discussed. Seven labs have been developed to accompany the material of the book.

Engineering Electromagnetics Nathan Ida 2007-02-15 This text not only provides students with a good theoretical understanding of electromagnetic field equations but it also treats a large number of applications. No topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. Included in this new edition are more than 400 examples and exercises, exercising every topic in the book. Also to be found are 600 end-of-chapter problems, many of them applications or simplified applications. A new chapter introducing numerical methods into the electromagnetic curriculum discusses the finite element, finite difference and moment methods.

Wavelet Applications in Engineering Electromagnetics Tapan K. Sarkar 2002 Written from an engineering perspective, this unique resource describes the practical application of wavelets to the solution of electromagnetic field problems and in signal analysis with an even-handed treatment of the pros and cons. A key feature of this book is that the wavelet concepts have been described from the filter theory point of view that is familiar to researchers with an electrical engineering background. The book shows you how to design novel algorithms that enable you to solve electrically, large electromagnetic field problems using modest computational resources. It also provides you with new ideas in the design and development of unique waveforms for reliable target identification and practical radar signal analysis. The book includes more than 500 equations, and covers a wide range of topics, from numerical methods to signal processing aspects.

Engineering Electromagnetics 9e HAYT 2018-01-22 First published just over 50 years ago and now in its Eighth Edition, Bill Hayt and John Buck’s Engineering Electromagnetics is a classic text that has been updated for electromagnetics education today. This widely-respected book stresses fundamental concepts and problem solving, and discusses the material in an understandable and readable way. Numerous illustrations and analogies are provided to aid the reader in grasping the difficult concepts. In addition, independent learning is facilitated by the presence of many examples and problems. Important updates and revisions have been included in this edition. One of the most significant is a new chapter on electromagnetic radiation and antennas. This chapter covers the basic principles of radiation, wire antennas, simple arrays, and transmit-receive systems.

Electromagnetics Made Easy S. Balaji 2020-04-22 This book is intended to serve as an undergraduate textbook for a beginner’s course in engineering electromagnetics. The present book provides an easy and simplified understanding of the basic principles of electromagnetics. Abstract theory has been explained using real life examples making it easier for the reader to grasp the complicated concepts. An introductory chapter on vector calculus and the different coordinate systems equips the readers with the prerequisite knowledge to learn electromagnetics. The subsequent chapters can be grouped into four broad sections – electrostatics, magnetostatics, time varying fields, and applications of electromagnetics. Written in lucid terms, the text follows a sequential presentation of the topics, and discusses the relative merits and demerits of each method. Each chapter includes a number of examples which are solved rigorously along with pictorial representations. The book also contains about 400 figures and illustrations which help students visualize the underlying physical concepts. Several end-of-chapter problems are provided to test the key concepts and their applications. Thus the book offers a valuable resource for both students and instructors of
electrical, electronics and communications engineering, and can also be useful as a supplementary text for undergraduate physics students.

Handbook of Engineering Electromagnetics
Rajeev Bansal 2004-09-01
Engineers do not have the time to wade through rigorously theoretical books when trying to solve a problem. Beginners lack the expertise required to understand highly specialized treatments of individual topics. This is especially problematic for a field as broad as electromagnetics, which propagates into many diverse engineering fields. The time h

Engineering Electromagnetics
Kenneth Robert Demarest 1998
This book offers a traditional approach on electromagnetics, but has more extensive applications material. The author offers engaging coverage of the following: CRT’s, Lightning, Superconductors, and Electric Shielding that is not found in other books. Demarest also provides a unique chapter on "Sources Forces, and Fields" and has an exceptionally complete chapter on Transmissions Lines.

Electromagnetics for Engineering Students
Part I
Sameir M. Ali Hamed 2017-09-20
Electromagnetics for Engineering Students starts with an introduction to vector analysis and progressive chapters provide readers with information about dielectric materials, electrostatic and magnetostatic fields, as well as wave propagation in different situations. Each chapter is supported by many illustrative examples and solved problems which serve to explain the principles of the topics and enhance the knowledge of students. In addition to the coverage of classical topics in electromagnetics, the book explains advanced concepts and topics such as the application of multi-pole expansion for scalar and vector potentials, an in depth treatment for the topic of the scalar potential including the boundary-value problems in cylindrical and spherical coordinates systems, metamaterials, artificial magnetic conductors and the concept of negative refractive index. Key features of this textbook include: • detailed and easy-to follow presentation of mathematical analyses and problems • a total of 681 problems (162 illustrative examples, 88 solved problems, and 431 end of chapter problems) • an appendix of mathematical formulae and functions

Electromagnetics for Engineering Students is an ideal textbook for first and second year engineering students who are learning about electromagnetism and related mathematical theorems.

Engineering Electromagnetics and Waves
Umran S. Inan 2014-12-04
Engineering Electromagnetics and Waves is designed for upper-division college and university engineering students, for those who wish to learn the subject through self-study, and for practicing engineers who need an up-to-date reference text. The student using this text is assumed to have completed typical lower-division courses in physics and mathematics as well as a first course on electrical engineering circuits. This book provides engineering students with a solid grasp of electromagnetic fundamentals and electromagnetic waves by emphasizing physical understanding and practical applications. The topical organization of the text starts with an initial exposure to transmission lines and transients on high-speed distributed circuits, naturally bridging electrical circuits and electromagnetics.

Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It provides:

- Modern Chapter Organization
- Emphasis on Physical Understanding
- Detailed Examples, Selected Application Examples, and Abundant Illustrations
- Numerous End-of-chapter Problems, Emphasizing Selected Practical Applications
- Historical Notes on the Great Scientific Pioneers
- Emphasis on Clarity without Sacrificing Rigor and Completeness
- Hundreds of Footnotes Providing Physical Insight, Leads for Further Reading, and Discussion of Subtle and Interesting Concepts and Applications

A Student's Guide to Maxwell's Equations
Daniel Fleisch 2008-01-10
Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to
produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.

Introductory Engineering Electromagnetics
Branko D. Popović 1971

Surface Electromagnetics
Fan Yang 2019-06-20

Provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced electromagnetic surfaces.

Applied Electromagnetics in Materials
K. Miya 2013-10-22 The proceedings of this International Symposium focus on recent advances and current research in the study of electromagnetic phenomena in advanced materials, and the potential applications of such research in a variety of areas, including non-destructive testing, steel-making, and nuclear and electrical engineering. Also discussed is the effect of electromagnetic fields on the micro- and macromechanics of solid materials, and the application of electromagnetics to the preparation and characterization of new superconducting materials. This is a valuable account of current research in an increasingly topical area which will be of interest to materials scientists working on advanced materials and to electrical, mechanical and nuclear engineers interested in the application of electromagnetic forces in industry.

Engineering Electromagnetics
Nathan Ida 2015-03-20 This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps - a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries. The new edition includes: modifications to about 30-40% of the end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The wealth of examples and alternative explanations makes it very approachable by students. More than 400 examples and exercises, exercising every topic in the book Includes 600 end-of-chapter problems, many of them applications or simplified applications Discusses the finite element, finite difference and method of moments in a dedicated chapter

Engineering Electromagnetics
Umran S. Inan 1999 Engineering Electromagnetics provides a solid foundation in electromagnetics fundamentals by emphasizing physical understanding and practical applications. Electromagnetics, with its requirements for abstract thinking, can prove challenging for students. The authors' physical and intuitive approach has produced a book that will inspire enthusiasm and interest for the material. Benefiting from a review of electromagnetic curricula at several schools and repeated use in classroom settings, this text presents material in a rigorous yet readable manner.

FEATURES/BENEFITS Starts with coverage of transmission lines before addressing fundamental laws, providing a smooth transition from circuits to electromagnetics. Emphasizes physical understanding and the experimental bases of fundamental laws. Offers detailed examples and numerous practical end-of-chapter problems, with each problem's topical content clearly identified. Provides historical notes, abbreviated biographies, and hundreds of footnotes to motivate interest and enhance understanding. Back Cover Benefiting from a review of electromagnetics curricula at several schools and repeated use in classroom settings, this text presents material in a comprehensive and practical yet readable manner. Features: Starts with coverage of transmission lines before addressing fundamental laws, providing a smooth transition from circuits to electromagnetics. Emphasizes physical
understanding and the experimental bases of fundamental laws. Offers detailed examples and numerous practical end-of-chapter problems, with each problem's topical content clearly identified. Provides historical notes, abbreviated biographies, and hundreds of footnotes to motivate interest and enhance understanding.